(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

active(f(f(a))) → mark(f(g(f(a))))
active(f(X)) → f(active(X))
f(mark(X)) → mark(f(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

ACTIVE(f(f(a))) → c(F(g(f(a))), G(f(a)), F(a))
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
S tuples:

ACTIVE(f(f(a))) → c(F(g(f(a))), G(f(a)), F(a))
ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:

active, f, proper, g, top

Defined Pair Symbols:

ACTIVE, F, PROPER, G, TOP

Compound Symbols:

c, c1, c2, c3, c4, c6, c7, c8, c9

(3) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)

Removed 1 of 9 dangling nodes:

ACTIVE(f(f(a))) → c(F(g(f(a))), G(f(a)), F(a))

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
S tuples:

ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:

active, f, proper, g, top

Defined Pair Symbols:

ACTIVE, F, PROPER, G, TOP

Compound Symbols:

c1, c2, c3, c4, c6, c7, c8, c9

(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
We considered the (Usable) Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
And the Tuples:

ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(ACTIVE(x1)) = 0   
POL(F(x1)) = 0   
POL(G(x1)) = 0   
POL(PROPER(x1)) = [1]   
POL(TOP(x1)) = [2]x1   
POL(a) = [2]   
POL(active(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1, x2)) = x1 + x2   
POL(c6(x1, x2)) = x1 + x2   
POL(c7(x1)) = x1   
POL(c8(x1, x2)) = x1 + x2   
POL(c9(x1, x2)) = x1 + x2   
POL(f(x1)) = x1   
POL(g(x1)) = [1]   
POL(mark(x1)) = [1] + x1   
POL(ok(x1)) = x1   
POL(proper(x1)) = x1   

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
S tuples:

ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0))
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
K tuples:

TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
Defined Rule Symbols:

active, f, proper, g, top

Defined Pair Symbols:

ACTIVE, F, PROPER, G, TOP

Compound Symbols:

c1, c2, c3, c4, c6, c7, c8, c9

(7) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace ACTIVE(f(z0)) → c1(F(active(z0)), ACTIVE(z0)) by

ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
S tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
K tuples:

TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
Defined Rule Symbols:

active, f, proper, g, top

Defined Pair Symbols:

F, PROPER, G, TOP, ACTIVE

Compound Symbols:

c2, c3, c4, c6, c7, c8, c9, c1

(9) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
We considered the (Usable) Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
And the Tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(ACTIVE(x1)) = x1   
POL(F(x1)) = 0   
POL(G(x1)) = 0   
POL(PROPER(x1)) = 0   
POL(TOP(x1)) = [4]x1   
POL(a) = [2]   
POL(active(x1)) = 0   
POL(c1(x1, x2)) = x1 + x2   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1, x2)) = x1 + x2   
POL(c6(x1, x2)) = x1 + x2   
POL(c7(x1)) = x1   
POL(c8(x1, x2)) = x1 + x2   
POL(c9(x1, x2)) = x1 + x2   
POL(f(x1)) = [4]x1   
POL(g(x1)) = 0   
POL(mark(x1)) = x1   
POL(ok(x1)) = x1   
POL(proper(x1)) = x1   

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
S tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
K tuples:

TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
Defined Rule Symbols:

active, f, proper, g, top

Defined Pair Symbols:

F, PROPER, G, TOP, ACTIVE

Compound Symbols:

c2, c3, c4, c6, c7, c8, c9, c1

(11) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0)) by

PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c4(F(ok(a)), PROPER(a))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c4(F(ok(a)), PROPER(a))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
S tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c4(F(ok(a)), PROPER(a))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
K tuples:

TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
Defined Rule Symbols:

active, f, proper, g, top

Defined Pair Symbols:

F, PROPER, G, TOP, ACTIVE

Compound Symbols:

c2, c3, c6, c7, c8, c9, c1, c4

(13) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c(F(ok(a)))
PROPER(f(a)) → c(PROPER(a))
S tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c(F(ok(a)))
PROPER(f(a)) → c(PROPER(a))
K tuples:

TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
Defined Rule Symbols:

active, f, proper, g, top

Defined Pair Symbols:

F, PROPER, G, TOP, ACTIVE

Compound Symbols:

c2, c3, c6, c7, c8, c9, c1, c4, c

(15) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c(F(ok(a)))
PROPER(f(a)) → c
S tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c(F(ok(a)))
PROPER(f(a)) → c
K tuples:

TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
Defined Rule Symbols:

active, f, proper, g, top

Defined Pair Symbols:

F, PROPER, G, TOP, ACTIVE

Compound Symbols:

c2, c3, c6, c7, c8, c9, c1, c4, c, c

(17) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

PROPER(f(a)) → c(F(ok(a)))
PROPER(f(a)) → c
We considered the (Usable) Rules:

proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
And the Tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c(F(ok(a)))
PROPER(f(a)) → c
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(ACTIVE(x1)) = 0   
POL(F(x1)) = 0   
POL(G(x1)) = 0   
POL(PROPER(x1)) = [1]   
POL(TOP(x1)) = [4]x1   
POL(a) = [2]   
POL(active(x1)) = x1   
POL(c) = 0   
POL(c(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1, x2)) = x1 + x2   
POL(c6(x1, x2)) = x1 + x2   
POL(c7(x1)) = x1   
POL(c8(x1, x2)) = x1 + x2   
POL(c9(x1, x2)) = x1 + x2   
POL(f(x1)) = [2]x1   
POL(g(x1)) = [3]   
POL(mark(x1)) = [2] + x1   
POL(ok(x1)) = x1   
POL(proper(x1)) = x1   

(18) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c(F(ok(a)))
PROPER(f(a)) → c
S tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
G(ok(z0)) → c7(G(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
K tuples:

TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
PROPER(f(a)) → c(F(ok(a)))
PROPER(f(a)) → c
Defined Rule Symbols:

active, f, proper, g, top

Defined Pair Symbols:

F, PROPER, G, TOP, ACTIVE

Compound Symbols:

c2, c3, c6, c7, c8, c9, c1, c4, c, c

(19) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0)) by

PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c6(G(ok(a)), PROPER(a))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))

(20) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c(F(ok(a)))
PROPER(f(a)) → c
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c6(G(ok(a)), PROPER(a))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
S tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c6(G(ok(a)), PROPER(a))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
K tuples:

TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
PROPER(f(a)) → c(F(ok(a)))
PROPER(f(a)) → c
Defined Rule Symbols:

active, f, proper, g, top

Defined Pair Symbols:

F, G, TOP, ACTIVE, PROPER

Compound Symbols:

c2, c3, c7, c8, c9, c1, c4, c, c, c6

(21) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)

Removed 1 of 14 dangling nodes:

PROPER(f(a)) → c

(22) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c6(G(ok(a)), PROPER(a))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
S tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c6(G(ok(a)), PROPER(a))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
K tuples:

TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
PROPER(f(a)) → c(F(ok(a)))
Defined Rule Symbols:

active, f, proper, g, top

Defined Pair Symbols:

F, G, TOP, ACTIVE, PROPER

Compound Symbols:

c2, c3, c7, c8, c9, c1, c4, c, c6

(23) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(24) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c5(G(ok(a)))
PROPER(g(a)) → c5(PROPER(a))
S tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c5(G(ok(a)))
PROPER(g(a)) → c5(PROPER(a))
K tuples:

TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
PROPER(f(a)) → c(F(ok(a)))
Defined Rule Symbols:

active, f, proper, g, top

Defined Pair Symbols:

F, G, TOP, ACTIVE, PROPER

Compound Symbols:

c2, c3, c7, c8, c9, c1, c4, c, c6, c5

(25) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

(26) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c5(G(ok(a)))
PROPER(g(a)) → c5
S tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c5(G(ok(a)))
PROPER(g(a)) → c5
K tuples:

TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
PROPER(f(a)) → c(F(ok(a)))
Defined Rule Symbols:

active, f, proper, g, top

Defined Pair Symbols:

F, G, TOP, ACTIVE, PROPER

Compound Symbols:

c2, c3, c7, c8, c9, c1, c4, c, c6, c5, c5

(27) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

PROPER(g(a)) → c5
We considered the (Usable) Rules:

proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
And the Tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c5(G(ok(a)))
PROPER(g(a)) → c5
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(ACTIVE(x1)) = 0   
POL(F(x1)) = 0   
POL(G(x1)) = 0   
POL(PROPER(x1)) = [2]   
POL(TOP(x1)) = [2]x1   
POL(a) = 0   
POL(active(x1)) = x1   
POL(c(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1, x2)) = x1 + x2   
POL(c5) = 0   
POL(c5(x1)) = x1   
POL(c6(x1, x2)) = x1 + x2   
POL(c7(x1)) = x1   
POL(c8(x1, x2)) = x1 + x2   
POL(c9(x1, x2)) = x1 + x2   
POL(f(x1)) = [4] + [4]x1   
POL(g(x1)) = [3]   
POL(mark(x1)) = [1] + x1   
POL(ok(x1)) = x1   
POL(proper(x1)) = x1   

(28) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c5(G(ok(a)))
PROPER(g(a)) → c5
S tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c5(G(ok(a)))
K tuples:

TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
PROPER(f(a)) → c(F(ok(a)))
PROPER(g(a)) → c5
Defined Rule Symbols:

active, f, proper, g, top

Defined Pair Symbols:

F, G, TOP, ACTIVE, PROPER

Compound Symbols:

c2, c3, c7, c8, c9, c1, c4, c, c6, c5, c5

(29) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

PROPER(g(a)) → c5(G(ok(a)))
We considered the (Usable) Rules:

proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
And the Tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c5(G(ok(a)))
PROPER(g(a)) → c5
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(ACTIVE(x1)) = 0   
POL(F(x1)) = 0   
POL(G(x1)) = 0   
POL(PROPER(x1)) = [2]   
POL(TOP(x1)) = [2]x1   
POL(a) = [2]   
POL(active(x1)) = x1   
POL(c(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1, x2)) = x1 + x2   
POL(c5) = 0   
POL(c5(x1)) = x1   
POL(c6(x1, x2)) = x1 + x2   
POL(c7(x1)) = x1   
POL(c8(x1, x2)) = x1 + x2   
POL(c9(x1, x2)) = x1 + x2   
POL(f(x1)) = [4]x1   
POL(g(x1)) = 0   
POL(mark(x1)) = [1] + x1   
POL(ok(x1)) = x1   
POL(proper(x1)) = x1   

(30) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c5(G(ok(a)))
PROPER(g(a)) → c5
S tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
K tuples:

TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
PROPER(f(a)) → c(F(ok(a)))
PROPER(g(a)) → c5
PROPER(g(a)) → c5(G(ok(a)))
Defined Rule Symbols:

active, f, proper, g, top

Defined Pair Symbols:

F, G, TOP, ACTIVE, PROPER

Compound Symbols:

c2, c3, c7, c8, c9, c1, c4, c, c6, c5, c5

(31) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0)) by

TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(a)) → c8(TOP(ok(a)), PROPER(a))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))

(32) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c5(G(ok(a)))
PROPER(g(a)) → c5
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(a)) → c8(TOP(ok(a)), PROPER(a))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
S tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
K tuples:

TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
PROPER(f(a)) → c(F(ok(a)))
PROPER(g(a)) → c5
PROPER(g(a)) → c5(G(ok(a)))
Defined Rule Symbols:

active, f, proper, g, top

Defined Pair Symbols:

F, G, TOP, ACTIVE, PROPER

Compound Symbols:

c2, c3, c7, c9, c1, c4, c, c6, c5, c5, c8

(33) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)

Removed 1 of 16 dangling nodes:

PROPER(g(a)) → c5

(34) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c5(G(ok(a)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(a)) → c8(TOP(ok(a)), PROPER(a))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
S tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
K tuples:

ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
PROPER(f(a)) → c(F(ok(a)))
PROPER(g(a)) → c5(G(ok(a)))
Defined Rule Symbols:

active, f, proper, g, top

Defined Pair Symbols:

F, G, TOP, ACTIVE, PROPER

Compound Symbols:

c2, c3, c7, c9, c1, c4, c, c6, c5, c8

(35) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

(36) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c5(G(ok(a)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(a)) → c8(TOP(ok(a)))
S tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
K tuples:

ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
PROPER(f(a)) → c(F(ok(a)))
PROPER(g(a)) → c5(G(ok(a)))
Defined Rule Symbols:

active, f, proper, g, top

Defined Pair Symbols:

F, G, TOP, ACTIVE, PROPER

Compound Symbols:

c2, c3, c7, c9, c1, c4, c, c6, c5, c8, c8

(37) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0)) by

TOP(ok(f(f(a)))) → c9(TOP(mark(f(g(f(a))))), ACTIVE(f(f(a))))
TOP(ok(f(z0))) → c9(TOP(f(active(z0))), ACTIVE(f(z0)))

(38) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c5(G(ok(a)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(a)) → c8(TOP(ok(a)))
TOP(ok(f(f(a)))) → c9(TOP(mark(f(g(f(a))))), ACTIVE(f(f(a))))
TOP(ok(f(z0))) → c9(TOP(f(active(z0))), ACTIVE(f(z0)))
S tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
TOP(ok(f(f(a)))) → c9(TOP(mark(f(g(f(a))))), ACTIVE(f(f(a))))
TOP(ok(f(z0))) → c9(TOP(f(active(z0))), ACTIVE(f(z0)))
K tuples:

ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
PROPER(f(a)) → c(F(ok(a)))
PROPER(g(a)) → c5(G(ok(a)))
Defined Rule Symbols:

active, f, proper, g, top

Defined Pair Symbols:

F, G, ACTIVE, PROPER, TOP

Compound Symbols:

c2, c3, c7, c1, c4, c, c6, c5, c8, c8, c9

(39) CdtUnreachableProof (EQUIVALENT transformation)

The following tuples could be removed as they are not reachable from basic start terms:

ACTIVE(f(f(f(a)))) → c1(F(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c1(F(f(active(z0))), ACTIVE(f(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c(F(ok(a)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c5(G(ok(a)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(ok(f(f(a)))) → c9(TOP(mark(f(g(f(a))))), ACTIVE(f(f(a))))
TOP(ok(f(z0))) → c9(TOP(f(active(z0))), ACTIVE(f(z0)))

(40) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
TOP(mark(a)) → c8(TOP(ok(a)))
S tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
K tuples:none
Defined Rule Symbols:

active, f, proper, g, top

Defined Pair Symbols:

F, G, TOP

Compound Symbols:

c2, c3, c7, c8

(41) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)

Removed 1 of 4 dangling nodes:

TOP(mark(a)) → c8(TOP(ok(a)))

(42) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
S tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
K tuples:none
Defined Rule Symbols:

active, f, proper, g, top

Defined Pair Symbols:

F, G

Compound Symbols:

c2, c3, c7

(43) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
We considered the (Usable) Rules:none
And the Tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(F(x1)) = [4]x1   
POL(G(x1)) = [4]x1   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c7(x1)) = x1   
POL(mark(x1)) = [2] + x1   
POL(ok(x1)) = [1] + x1   

(44) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
S tuples:

F(mark(z0)) → c2(F(z0))
K tuples:

F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
Defined Rule Symbols:

active, f, proper, g, top

Defined Pair Symbols:

F, G

Compound Symbols:

c2, c3, c7

(45) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F(mark(z0)) → c2(F(z0))
We considered the (Usable) Rules:none
And the Tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(F(x1)) = x1   
POL(G(x1)) = [5]x1   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c7(x1)) = x1   
POL(mark(x1)) = [1] + x1   
POL(ok(x1)) = x1   

(46) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(f(f(a))) → mark(f(g(f(a))))
active(f(z0)) → f(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(ok(z0)) → ok(g(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
S tuples:none
K tuples:

F(ok(z0)) → c3(F(z0))
G(ok(z0)) → c7(G(z0))
F(mark(z0)) → c2(F(z0))
Defined Rule Symbols:

active, f, proper, g, top

Defined Pair Symbols:

F, G

Compound Symbols:

c2, c3, c7

(47) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(48) BOUNDS(O(1), O(1))